2013年1月23日水曜日

寄付から投資のパラダイムシフト


寄付から投資のパラダイムシフト」という講演プレゼンを作っています。
寄付モデルと投資モデルはどう異なるのか? 日本では、まだこの点に関してあまり理解が進んでないようです。

私は以下のように整理しています。

          図表:寄付モデル VS 投資モデル
寄付モデルは困っている人たちが助かることが主眼であるのに対して、投資モデルは社会的課題を解決することに主眼がある。

寄付モデルは見返りの期待は小さいのに対して、投資モデルは見返りの期待が大きい。

寄付モデルは寄付者と寄付を受ける人、対象の関係性は一過性であるのに対して、投資モデルでは継続的である。

寄付モデルは危機に対して迅速に対応できるのに対して、投資モデルはモデル構築に時間がかかる。しかしながら、社会的インパクトは寄付が小さいのに対して、投資は大きい社会的インパクトを期待できる。


 社会にインパクトを与えるために、寄付モデルとともに、投資モデルを開発していく必要がある。震災復興も2年近くなり寄付金額も細っており、大きな社会的インパクトを生むとともに、持続可能なものにしていくには投資モデルの開発が不可欠となる。

2013年1月22日火曜日

ビッグデータが日本企業に迫る本当の意味は?

 ビッグデータ活用に注目が集まっている。これまでとはケタが違うレベルの大量のデータの活用が可能となってきたことが背景である。しかしながら、日本企業はビッグデータを自社の競争優位につなげることができるのか? そもそも、ビッグデータが競争優位につながるものなのかはまだ十分に実証されたとは言えない。

 ビックデータ活用でよく取り上げられるのはアマゾンである。日本法人も、米国同様のビジネスモデル、データ処理、アルゴリズム処理をおこなっている。日本法人の売上は4700億円を超えて、まさに斜陽産業となっている書籍業界の中でも破竹の勢いとなっている。
この背景にはアマゾンのビッグデータの活用のうまさがあると言われている。

 そもそも、競争優位につながるかどうかはその資源(リソース)の質による。リソース・ベースト・ビュー(RBV)理論にたつと、競争優位の源泉はその企業独自のユニークな資源であり、かつ、その資源は、①模倣可能性、②持続性、③帰属性、④代替可能性、⑤競争優位性を満たす必要がある。

  例えば、オイシックスは顧客が自社の会員になるかどうかは豚肉を注文したかどうかで高い確率でわかることを発見したという。これが事実であれば、豚肉を買ってもらうためにセット商品にしたりまた、価格を下げたり、ビッグデータを活用してマーケティングに活かすことができれば確かに競争優位に繋がるものと言えよう。

 オイシックスの例では、自社の顧客データを活用するという点ではまさに①模倣可能性、③帰属性、④代替可能性を満たしていると言えよう。ただし、そのビッグデータを活用する人材という補完的な経営資源なくしては、そのビッグデータは宝の山ではありながらも、潜在的なものにとどまるという点には注意が必要であると言えよう。ビッグデータ時代に増えるのは非構造的な、定量的なデータの方であり、そのデータを如何に構造化し、データから組織に意味のあるインプリケーションを導くかはそう簡単な話ではないのだ。

 また、業界によってもビッグデータの活用度合い、そのポテンシャルは異なる。私からみると、日本の業界で比較的ビッグデータの進んでいるのはソーシャルゲーム業界、コンビニ業界である。例えば、あるソーシャルゲームの会社では、発売したソーシャルゲームがヒットするかどうかは、発売直後の1〜2週間ぐらいのトラフィックデータ、インタラクションデータから高い確率で推定可能という。また、ソーシャルゲーム業界はアイテム課金などの課金方式で、ユーザーのWilling to Payの課金になっており、リアルタイムマーケティングが進んでいる。コミュンケーションが活発なユーザーほど高いお金をアイテム課金で落としていく。だから、ゲームの開発会社はいかに他者とのコミュニケーションを活発化されるべく、ゲームを作り込んでいくのだ。デモグラフィックデータよりもコミュニケーションデータの価値が高いのだ。これは消費者がネット、ソーシャルメディアで連結されるにつれて、様々な業界でますます重要になっている視点だ。

 ビッグデータを活用する上で、このリアルタイムなデータを活用できるのかが非常に大きなポイントと言うことができる。アジル(迅速)に、ユーザーとのリアルタイムな情報を活かし、リアルタイムなレスポンスに活かす。データは鮮度が重要であり企業に、そして顧客に価値をもたらす。そのデータの鮮度を活かすには組織にリアルタイムに情報を活かす体制がなければいけないのだ。この点では、B2B業界よりもB2C業界の方がビッグデータのポテンシャルを活かすことができるということができるかもしれない。

 もう一つこれはあまり語られていない話だが、ビッグデータを活用できるかどうかかは組織の人材の多様性が影響する。この点は、日本企業の共通の弱点にもなっているので、心すべきだろう。データ、情報は差異をもたらすものということを肝に銘じる必要があるのだ。金太郎あめのような同一の発想、思考では情報から意味を汲み取ることが難しいのだ。

 私のビッグデータの関心はソーシャルメディアROIをどう測定するかという点を出発点にしている。この点で、様々な業界で、エンゲージメントの違いが顧客価値に有為な差を生み出すことを発見し、それにあわせたマーケティング提案をしてきた。顧客、潜在顧客のコミュンケーションデータ、インタラクションデータをどう活かせるかが今後さらに重要になっていくだろう。つまり、情報の中でも、過去の購買履歴のような情報よりも、つながりの情報価値の重要性が高まっているのだ。誰とどうつながっているのか、誰とどういうコミュニケーションをとったかがその個人の行動予測性を飛躍的に高めることができるのである。

2013年1月21日月曜日

2013年ソーシャルセクターの方向性2


自民党政権に変わり、鳩山さんが推進した、新しい公共という言葉も死後になりつつある。ただし、新寄付税制とNPO認定制度は今後も、日本のソーシャルセクターに大きな影響を与えていくだろう。

ソーシャルセクターの助成金が期待できないので、中間支援組織も自主事業に向けた動きが始まりつつある。

JACEVOはソーシャルセクター向けのコンサルタント養成事業をリリースした。
私が知っている他の中間支援組織も、今年度は自主事業向けての準備を進めている。

ETICのような自主採算事業(インターシップのマッチング)があればいいのだが、中間組織団体は助成金がないと経営が成り立たないので大変である。

注目すべき流れは、 ちいさな未来企業補助である。

この「ちいさな未来企業補助金」がソーシャルセクターにどう影響を与えるかが注目される。

運用面はまだわからない点も多いが、
  
(以上引用)
若者らの小規模な起業(従業員が数人から20人以下)を促すために、1社あたり数百万円程度の小口の助成制度。2013年から5年間で約1万社を支援する方向。中小企業庁の創業・技術課の発表では、平成25年度の概算要求額は、50億円(特別重点要求40億、特別要求10億)

ITや子育て支援、介護や学習塾など、地域に根ざした会社を増やし、雇用の担い手としても期待する。また、若者の活力や女性ならではの視点を生かしたウェブデザインや、介護、食品販売など各地域の需要に合ったきめ細かいサービスの担い手を育てる狙いもある。

これをみると、ソーシャルセクターも対象になりそうである。ただし、どう採択していくのかその運用面の仕組みは不明である。

採択の認証に、既存の、ドリームゲートのような起業家サポート機関や、中小企業診断士、コンサルタントがどう関わってくるのか? 注目される。